CH102BS/CH202BS: CHEMISTRY #### B.Tech. I Year II Sem. L T P C 3 1 0 4 # **Course Objectives:** - To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer. - To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them. - To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry. - To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields. - To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways **Course Outcomes:** The basic concepts included in this course will help the student to gain: - The knowledge of atomic, molecular and electronic changes, band theory related to conductivity. - The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments. - The required skills to get clear concepts on basic spectroscopy and application to medical and other fields. - The knowledge of configurational and conformational analysis of molecules and reaction mechanisms. ### Unit - I: Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N_2 , O_2 and F_2 molecules. π molecular orbitals of butadiene and benzene. Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d- orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance. #### Unit - II: Water and its treatment: Introduction – hardness of water – Causes of hardness - Types of hardness: temporary and permanent – expression and units of hardness – Estimation of hardness of water by complexometric method. Potable water and its specifications. Steps involved in treatment of water – Disinfection of water by chlorination and ozonization. Boiler feed water and its treatment – Calgon conditioning, Phosphate conditioning and Colloidal conditioning. External treatment of water – Ion exchange process. Desalination of water – Reverse osmosis. Numerical problems. #### Unit - III: **Electrochemistry and corrosion:** Electro chemical cells – electrode potential, standard electrode potential, types of electrodes – calomel, Quinhydrone and glass electrode. Nernst equation Determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Numerical problems. Potentiometric titrations. Batteries – Primary (Lithium cell) and secondary batteries (Lead – acid storage battery and Lithium ion battery). Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current cathodic methods. Surface coatings – metallic coatings – methods of application. Electroless plating of Nickel. ### Unit - IV: **Stereochemistry, Reaction Mechanism and synthesis of drug molecules:** Introduction to representation of 3-dimensional structures, Structural and stereoisomers, configurations, symmetry and chirality. Enantiomers, diastereomers, optical activity and Absolute configuration. Conformation alanalysis of n- butane. Substitution reactions: Nucleophilic substitution reactions: Mechanism of S_N1 , S_N2 reactions. Electrophilic and nucleophilic addition reactions: Addition of HBr to propene. Markownikoff and anti Markownikoff's additions. Grignard additions on carbonyl compounds. Elimination reactions: Dehydro halogenation of alkylhalides. Saytzeff rule. Oxidation reactions: Oxidation of alcohols using $KMnO_4$ and chromic acid. Reduction reactions: reduction of carbonyl compounds using $LiAlH_4$ & $NaBH_4$. Hydroboration of olefins. Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin. #### Unit - V: **Spectroscopic techniques and applications:** Principles of spectroscopy, selection rules and applications of electronic spectroscopy. vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging. ## **Suggested Text Books:** - 1. Physical Chemistry, by P.W. Atkins - 2. Engineering Chemistry by P.C.Jain & M.Jain; Dhanpat Rai Publishing Company (P) Ltd., New Delhi. - 3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell - 4. Organic Chemistry: Structure and Function by K.P.C. Volhardt and N.E.Schore, 5th Edition. - 5. University Chemistry, by B.M. Mahan, Pearson IV Edition. - 6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan